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Abstract. In this article, we investigate the competing Glauber-type and Kawasaki-type dynamics with
small-world network (SWN) effect, in the framework of the Gaussian model. The Glauber-type single-spin
transition mechanism with probability p simulates the contact of the system with a heat bath and the
Kawasaki-type dynamics with probability 1 — p simulates an external energy flux. Two different types of
SWN effect are studied, one with the total number of links increased and the other with it conserved. The
competition of the dynamics leads to an interesting self-organization process that can be characterized by
a phase diagram with two identifiable temperatures. By studying the modification of the phase diagrams,
the SWN effect on the two dynamics is analyzed. For the Glauber-type dynamics, more important is the
altered average coordination number while the Kawasaki-type dynamics is enhanced by the long range
spin interaction and redistribution.

PACS. 89.75.-k Complex systems — 64.60.Ht Dynamic critical phenomena — 64.60.Cn Order-disorder
transformations; statistical mechanics of model systems — 64.60.Fr Equilibrium properties near critical

points, critical exponents

1 Introduction

Many systems in nature or society can be well described
by small world networks (SWN), which were first pro-
posed by Watts and Strogatz in reference [1]. SWNs are
those intermediate between a regular lattice and a ran-
dom network. They can be realized by introducing a very
small portion of long range links to a regular lattice. Such
networks appear as small-worlds like random graphs, i.e.,
with a small average node-node distance that grows log-
arithmically with the network size. Meanwhile they also
have usually large clustering coefficients [2-4]. Since the
first model system was proposed [1], a large literature has
appeared and the properties of various models and pro-
cesses on SWNs have been extensively studied, including
percolation, coloring, coupled oscillators, iterated games,
diffusion processes, epidemic processes, and spin models
(see Refs. [2-4] and references therein). For example, it has
been recently found that some spin-lattice models belong-
ing to different universality classes now show mean-field
behavior on SWNs [4-9]. Furthermore, recently Zhu et al.
introduced SWN effect to critical dynamics [10], and the
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investigation has been extended to the kinetic properties
of the spin models.

According to Glauber’s and Kawasaki’s theory [11,12],
the time evolution of the order parameters can be de-
scribed by a Markov process with a specific choice of the
dynamic mechanism. Two mechanisms have been exten-
sively studied: Glauber’s single-spin flip mechanism [11]
with the order parameter nonconserved and Kawasaki’s
spin-pair exchange mechanism [12] with the order param-
eter conserved. In the past decade, an interesting prob-
lem has been attracting much attention, i.e., the compet-
ing Glauber-type and Kawasaki-type dynamics. We briefly
explain the physical ground: Glauber’s mechanism with
probability p is used to simulate the contact of the system
with a heat bath and favors a low energy state. Meanwhile
Kawasaki’s mechanism with probability 1 —p simulates an
external energy flux and, naturally, favors a high energy
state. Then there will a competition between the two dy-
namics. This competing mechanism has been applied to
the spin models [13—-19], and interesting self-organization
has been reported. All these works have considered regu-
lar lattice, and to extend the investigation to the small-
world networks should be of interest. At the same time,
such a study may also have theoretical meaning. In Zhu’s
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work [10], it has been found that the SWN effect may
have different types of influence on the Glauber-type dy-
namics and the Kawasaki-type dynamics. By focusing on
the competition of the dynamics, it is easy for us to further
understand the influence of the SWN effect and highlight
the disparities between the dynamics.

In this article we investigate the SWN effect on the
competing dynamics, and we demonstrate the conclusions
by comparing the phase diagrams obtained with and with-
out the SWN effect. Before we present the calculations,
we first describe the prototypes of SWNs that are used in
the present study, and then briefly review the generalized
competing mechanism.

The SWN models: After the first prototype of SWN
was proposed by Watts and Strogatz [1], there appear a
variety of model systems that can be categorized into the
two groups, i.e., with the total number of links increased
or conserved. Correspondingly, in the present research we
study two specific, while representative models described
below: (1) in a one-dimensional loop, for example, each
randomly selected pair of vertices are additionally con-
nected with probability pa; (2) the vertices are visited one
after another, and each of its links in the clockwise sense is
left in place with probability 1 — pg and is reconnected to
a randomly selected other node with probability pr. Net-
works of higher dimensions can be similarly built. We call
the first model adding-type small-world network (A-SWN)
and the second one rewiring-type network (R-SWN).

The generalized competing mechanism: Glauber’s flip
mechanism and Kawasaki’s exchange mechanism were
originally presented for the Ising model. Recently they
have been generalized to single-spin transition mecha-
nism [20] and spin-pair redistribution mechanism [21], re-
spectively, which can be applied to arbitrary spin systems.
Correspondingly there is the generalized competing dy-
namics [19], which provides a basis for the discussions in
this article. With the competing mechanism, the master
equation can be written as

.ip(&ﬂ¢)=pame+(1—p)Km@ (1)

where pG,,e denotes the single-spin transition with prob-
ability p and (1 — p) K,,,e denotes the spin-pair redistri-
bution with probability 1 — p. For your convenience we
list in Sections 2 and 3 some important equations of the
transition mechanism and the redistribution mechanism,
the details of which can be found in respective references.

In this article we study the generalized competing dy-
namics in the framework of the kinetic Gaussian model,
which is mathematically tractable. It has been revealed in
reference [10] that the SWN effect on the Gaussian model
is of the mean-field nature. Considering this, in the present
study a simplified method is adopted, although a rigorous
treatment is possible.

In Section 2 we study the competing mechanics on
A-SWN and in Section 3, we extend the discussions to
R-SWN. Section 4 is the summarization with some dis-
cussions.
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2 Competing mechanism on A-SWN

In this section we present our discussion of the competing
dynamics on adding-type small-world networks (the def-
inition see the Introduction). In Section 2.1 through 2.3
we give the formulation of the Glauber-type mechanism,
the Kawasaki-type mechanism and the competing mech-
anism, and then in Section 2.4 the competing mechanism
is applied to the three-dimensional Gaussian model.

2.1 The Glauber-type mechanism

With the Glauber-type single-spin transition mecha-
nism [10,20] on A-SWN, the master equation can be writ-
ten as

P({o},1) ({o},1)

({O’j;ﬁi},@',t)}, (2)

(0, = 6;) P

ZZ
fW (6; = o) P

where the transition probability

vmm~w=éwmwmwwLwL

K2

Qi =Y exp[-BH ({ojzi},6:)].

Gi

With equation (2), one can continue to write that [10,20],

d
EQk(t)—Q = —qx ( +{z;

ZUka k_’Uk)]
P({o}t), (3)

where

=Y ouP ({o}.1). (4)
{o}

2.2 The Kawasaki-type mechanism

With the Kawasaki-type spin-pair redistribution mech-
anism on A-SWN, the master equation can be written
as [10,21]

P{e})=2_> [~

(41) 6561

P({o},t)

]l a]al — U]Ul

+ W;i(6561 — 0j01) P({0ji, 0121}, 6, 01, )]

- pAZZZ

J 1#j 6561

Wii(ojor — 6561)P({0},1)

+Wji(6561 — 0jo1) P({0jzi, 012k}, 6, 61, 1)]
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where the redistribution mechanism

Wii(ojo1 — 6,61) =

1 ..
a%ﬁm,&ﬁm exp [ — BH({om}mzi1,65,60)], ()
J

Qjt =Y 60,115,450 eXP|=BH{Om bmjis 55,61
&j&l

With the master equation above, we can further get that

i‘]k()

dt
2.2

{o} w

Qk = —2Dax(1)

> 6k Wiktw (OkOkiw — OkOk1w)

Ok Oktw

x P({o},t) + pa{—(N — 1)qx(t)

10D 66 Wi (ko1 — G160)

{0} | 1k 65,61

P({o}, 1)}, (6)

where ) = denotes the summation taken over nearest
neighbors.

2.3 Competing mechanism

Naturally, both Glauber’s dynamics and Kawasaki’s dy-
namics favor a lower energy state. However, when the sys-
tem under study is in contact with a heat bath while
exposed to an external energy flux, one requires a com-
petition between a process that favors lower system en-
ergy and another process that favors higher system en-
ergy. Usually, Glauber’s mechanism is used to simulate
the contact of the system with a heat bath and favors a
lower energy state. Meanwhile Kawasaki’s mechanism can
be modified in order to simulate an external energy flux
that drives the system towards higher energy. This can be
achieved by switching 8 to —3, or K = 8J = J/KgT
to —K, and modifying the redistribution probability ac-
cordingly, i.e.

W;i o< exp[—BH] = Wj; « exp[+G8H]. (7)

This means that the competition between Glauber’s mech-
anism and Kawasaki’s mechanism is actually that between
ferromagnetism and antiferromagnetism.

Based on the above considerations, we use the com-
peting mechanism to simulate the dynamics of a system
in contact with a heat bath and exposed to an external
energy flux simultaneously. The master equation can be
written as (Eq. (1)),

L b ({o1,1) = pCome + (1 p) Kne,

where
Gme = - Z Z Wi(ai - &I)P({U}’ t)

— Wi(6; — 03)P({oj2i}, 0, 1).
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and

Kne =33 [ -

(jl) 6561

Wi(ojor — 6;61)P({0},1)

+Wii(661 — 0j01) P({0ji, 04}, 64,61, 1)

+= pAZZZ

7 i£] 6,61
+Wii(6j61 — ojo1) P({oj2i, 012k }, 65,61, 1)] -

Wii(ojo1 — 6;61)P({c},1)

From the master equation, we can obtain the evolving
equation of single spins,

Sa(t) = pQf + (1 - p)QK. 8)

The first term describes the Glauber-type dynamics which
is used to simulate the influence of the energy flux and
QY is given by equation (3). The second term describes
the Kawasaki-type dynamics which is used to simulate
the influence of the energy flux. As mentioned above, we
require it to favor higher energy state. However, the redis-
tribution probability, equation (5), clearly favors a lower
energy state. Considering this, we can use the expression
of equation (6) for QX if we simply switch the sign before
[ in the redistribution probability.

2.4 The competing dynamics in the Gaussian model

Now we turn to the Gaussian model built on an A-SWN,
of which the Hamiltonian can be written as

- BH ({o})

=K 0ijk (Gip1,jk + Oijirk + Oijkr1)

ijk
1 1
+ §pAKZO'z’jk Z Oirjik — §pAKZO—i2jka
ijk i3k ijk
where 0 = 1/kpT and K = BJ. We only discuss the

case of K > 0, namely, J > 0. This case corresponds
to the ferromagnetic system. The expression (9) is ob-
tained by taking into consideration the fact that the in-
fluence of the system as a whole on individual spins is
of the mean-field nature [10] (for related discussions see
Refs. [4-9]). The spins can take any real value from —oo
to +00. The probability of finding a given spin between
o and oy + doy, is assumed to be the Gaussian-type dis-

tribution, f(oy)doy = \/% exp (—%0‘]%) doy, where b is a
distribution constant independent of temperature. There-
fore, the summation of the spin value turns into an in-

tegration, and we can further obtain from equations (3)
and (6),

Qi = —aiji(t)
K
T > (@ivw k(D) + i jrok(t) + Gijrrw(t)
w==%1

=|=

+ — (N = 1LpaM(t), (K>0)
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K 1
ijk = 5370 U(Qi+1,5.0 — Gijk) — (Qiyjk — Gi-15
Qz]k 2 [b + (7K)] {[(q +1,5,k q ,],k) (q Ik q 1,],19)]
+ (@516 — Qigk) — (€igk — dij—1.6)] + [(Gigk+1 — Gigk) — (Qigk — Gije—1)]}
+ (=K) [2(2qi—1,5,k — Qi—1,j41,6 — Gi—1,j—1,k) + (2qi—1,5,k — Qi j e — Qi—2,5,k)
2 [b + (*K)] 2D I, J— 4 »Js »Js 5Js

+2(2Gi+1,5,k — Qit1,5+1k — Git1,5-1,k) + (20415, — Gk — Qit2,5,k)

+2(2¢5 -1,k — Gij—1,641 — Gij—1,k—1) + (20 -1,k — Gijk — Gij—2,k)

+2(2¢i,j41,6 = Gij+1,k41 = Gij+1,6—1) + (205416 — Gijk — Gij+2,k)

+2(2¢5,5,k—1 — Qit1,5,k—1 — Qi—15,k—1) + (2¢i,j,—1k — Qirjk — Gij—2.k)

+2(2¢5,j,k+1 = Qit1,5,k4+1 = Gim1,5,5+1) + (25,641 = Qi — Gijik+2)]

A K
“BAN 1) aign(0) ~ M)+ pa(y - 1) SR
X > (Gitwsk — M) + (g +wr — ME) + (@ijrte — M®)], (b> K >0) (10)
w==+1
where M (t) = & >, ax (t), and where
Q/'Gk = —q’- (1)
See equation (10) above Y Y
- Z Q'Hrw,j k + QZ,jer k( ) + qg,j,ker (t)]
where b > K > 0 is required by the convergence of the w=+1
integration. I E(N - 1)pA(71)i+j+kM(t)
)
Now we determine the system behavior by studying b

the following order parameters. First, from equation (8) and

we obtain

d 1 d
%M(t) = Z E%’jk(t)
ijk
1
=Py Zng +(1- ZQW
ijk N
B {1 S %(N _ m] M(1), (11)

Zijk ng = 0 means that the Kawasaki-type dynamics
does not change the value of M (¢). Second, we define

= quk = NZ

'L]k ijk

z+]+k

] (t)v

and similarly we obtain

d 1 d
%M/(t) =5 Z %qg]’k (t)
ijk
= N Z Qz]k + Z Qz]k? (12)
ijk ijk

See equation in next page.

Performing the summation over the indices 7, j, and k, we
get

(1) = {p<1+%) sy

_nal¥ o1 (1 ) g)]}w). (13)

The solutions of equations (11) and (13) are

0=t { o1 (15 22028) K )
(K >0) (14)

+(1—p)[ 56 +pA(N

6— K/K? 2_1)] (1_%))t}

if p=1,then K >0 5
if p# 1,then (b > K > 0) (15)
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mb {{(=dirgn = digr) = (g + dim15,1)]

+ [(_qg,j+1,k —Gigr) — (G je + qg,j—l,k)] + [(_qg,j,kJﬁl — i) — (@ + qg,j,k—l)]}
—L [2(—2%{71,;% - qgfl,j+1,k - qgfl,jfl,k) + (_2q'£71,j,k - q;,j,k - q272,j,k)
2(b—- K)
+2(*2qg+1,j,k - qg+1,j+1,k - q'£+1,j71 k) +(— 2q’£+1,j,k - q;,j,k - qz/'+2,j,k)
+2(=2G1 1.0 — Gjotet1 — Gjore—1) T (=2¢0 o106 — Gige — Gij—2,1)
+2(*2q;,j+1,k - q;,j+1,k+1 - qg,j+1,k 1) + ( 2q;,j+1,k - qg,j,k - q;,j+2,k)
+2(=24} k-1 = Gis1.gk—1 — Gir—15.0—1) + (=2G0 5 —1k — Qi ik — Gij—2.k)
+2(*2q;’,j,k+1 - Qz/'+1,j,k+1 - qg—l,j,k-kl) + (- 2qg,j,k+1 - qz,',j,k - qg,j,k+2)]
=D L0 - (1
K ' 6k

b

(Gitw, () + Qi jrw k() + @i jtn(t)) —
w

?(—1)i+j+kM(t)}.

where KO = |J| /kpT. = b/6 is the critical point of the
three-dimensional Gaussian model without the SWN ef-
fect.

(1) When the SWN effect does not exist and py =0,
M(t) =M (0)exp [-p (1 — K/K2)t], (16)
M'(t) = M’ (0)

X exp{ - |:p (1+K/K2) +36(1— )%] t}

(17)

Analyzing the long-time system behavior, we find that:
(1.a) For the case of
K <K}, (T>T),
we have both vanishing M (t) and M’ (t), which corre-

spond to the paramagnetic phase.
(1.b) For the case of

K — K? (18)

M’ (t) — 0, and

1

M) = 1- K/KO

— 00, (19)

M (0) exp [—pﬂ v

the critical slowing down of the order parameter M (¢) will
appear at the critical point K.
(1.c) For the case of
K>K? (T<T.),

and

K 1
22 (36441 1561p2 — 2808p + 1296 ) ,
%0 <3 ( +41p+ +/(1561p p + 1296)

C

we have nonvanishing M (¢) and vanishing M’ (¢), which
correspond to the ferromagnetic phase.
(1.d) For the case of

K

ip (—36 +41p + /(1561p% — 2808p + 1296))

we have both nonvanishing M (¢) and M’ (¢).
With both of the order parameters nonvanishing, this

phase cannot be simply identified as ferromagnetic or anti-

ferromagnetic. We name it as heterophase, and from equa-

tions (16, 17) we can see that the system behavior strongly

depends on the initial condition and the temperature.
(1.e) For the case of

K/K? > 6,

we could obtain M (t) # 0, and when p = 1 (with
pure Glauber-type dynamics simulating the contact with
a heat bath), we have M’ (t) — 0. However, with p # 1
(with an external energy flow), because the antiferromag-
netic Kawasaki-type dynamics is limited by the condition
(b > K > 0) to ensure the convergence of the integra-
tion, we cannot obtain the value of M’ (t). As a result,
we cannot theoretically obtain the system behavior in the
temperature region K/K? > 6 1.

The phase diagram is shown in Figure 1a.

(2) Now the A-SWN effect is introduced and p4 # 0.
We suppose pg = 1/N, and then we have

o= sre i (141 E1Y

! The same problem exists in reference [19], i.e., the system
behavior cannot be theoretically obtained for the region K > b.
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Fig. 1. The phase diagrams of the three-dimensional Gaussian
model on (a) regular lattice, (b) A-SWN, and (c) R-SWN.
The regions Para, Ferro, and Hetero correspond to the para-
magnetic, ferromagnetic, and heterophase phase, respectively,
while the part of oblique lines belong to unknown region.

and

The European Physical Journal B

Analyzing the long-time asymptotic behavior, we can sim-
ilarly get:
(2.a) For the case of

K < KC|pA=1/N 7 co

the condition leads to vanishing M (¢f) and vanish-
ing M’ (t), which correspond to the paramagnetic phase.
(2.b) For the case of

6

K- Kc';DAzl/N -7

0
K,

the critical slowing down of the system will appear.
(2.¢) For the case of

89p — 79 + \/7T120p? — 12862p + 5929 _ K _ 6
2(3p—1)

-5 >
KY ™ 7
we have nonvanishing M (¢) and vanishing M’ (¢), which
correspond to the ferromagnetic phase.
(2.d) For the case of

K - 89p — 79 + /7129p2 — 12862p + 5929
K9 2(3p—1) ’

we have both nonvanishing M (¢) and M’ (¢), which cor-
respond to the heterophase.
(2.e) For the case of

6 >

K/K? > 6,

for the same reason (see (1.e)), we cannot obtain theoret-
ically the system behavior.
The phase diagram is shown in Figure 1b.

3 Competing mechanism on R-SWN

Now we investigate the competing dynamics on rewiring-
type small-world networks (the definition see the Intro-
duction), and the sequence of the content is the same as
that in the previous section.

With the Glauber-type mechanism, the master equa-
tion has the same form as equation (2), and the single-spin
evolving equation is also given by equation (3).

With the Kawasaki-type mechanism, the master equa-
tion can be written as

& P(io),1) =
(1-pr Z Z

(41) 6561

Wii(ojor — 6;61)P({o},t)

+Wii(6561 — o501)P({0ji, 0141}, 65,01, )]

122 > [

J1#5 6560

DPR

Wi(ojor — 6;61)P({0},t)

+Wii(6561 — o01)P({0j2i, 0141}, 65,61, )] -
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K pr—
ka - (1 —pr

MWK
+ (i1 — i) — (Qigk —

__ K(l-pr)
Q[be(lpr

+2(2¢it1,5,k — Qit1,5+1,k — Qit1,5-1,k

+2(2¢i -1,k — Qirj—1,k+1 — Girj—1,k—1

+2(2Gi,j, k-1 = Qit1,5,k—1 — @i, —15,k—1

)+
)+
+2(2¢i, 541,k — Gijt1kr1 — Gijr1k—1) +
)+
)+

+2(2¢i,5,k+1 = Qit1,5,k+1 — Qim1,5,k+1

—ng {qz'jk(t) - M)+ @

(b>K(1—-pr)>0)

@ij—1,6)] + [(@i.5,6+1

(
(

w==1

551

7 b{[(qit1,5.6 — Gigk) = (Qijk — Gi—1,5,%)]

= Gi,ik) = (@56 — Qige—1)]}

I (2(2gi-1,5,k — Gi—1,4+1,6 — Qim1,j-1,k) + (2qi—1,5,k — Qijk — Gi—2,5,k)

(2¢i+1,5,6 = Qi — Qit2,5,k)
(2¢i,5-1,k — Qirje — Qirj—2,k)
(2Gi,j+1,k = Qijk — Gij+2.k)

2Gij,—1k — Qi,j.k — Qij—2,k

)
2Gi,j,k+1 = Qigk — Gijk+2)

(Gitw,jk + Gijtrwk + Giyjhtw) — 6M (t)] } ,

The redistribution probability Wj; is given by equa-
tion (5), and the single-spin evolving equation

d

Eqk(ﬁ) =QF=q( —pR){ — 2Dqy(t)

2

E GeWi ketw Ok Okt — OkOktw)

{c} w==%1 | 6y,6k4w
D
P({o}.0) } Don | (v~ 1)u(t) +

S0 oxWiilowor — 6x61)

{0} | 1k 64,64

P({a},1)

With the competing mechanism, the evolution of ¢ (t)
is once again described by an equation having the same
form as equation (8)

ar(t) = pQY + (1 - p)QK,

dt

which consists of two terms, one corresponding to the
Glauber-type dynamics and the other corresponding to
the Kawasaki-type dynamics. In the following we turn to
the Gaussian model.

For the three-dimensional Gaussian model built on a
R-SWN, the Hamiltonian can be written as

—BH = K(1=pr) Y oijk (0is1,jk + 0i gtk + i)

ijk
S ok S ork )
-+ NpR ZO’ijk Z il jik — NpR Zo—ijk'
ijk i j'k! ijk

In the single-spin evolving equation with the competing
mechanism, the term that corresponds to the Glauber-
type dynamics is now given by

K
ng = —qijr(t) + ?(1 — DR)
X Z (Gitw,jik + Gijrwk T Qijetw)
w==%1
6
+ %KM( ), (K > 0)

and the term that corresponds to the Kawasaki-type dy-
namics can be written as (similarly, we switch [ to -, and
K to —K)

See equation above,

where b > K(1 — pr) > 0 is required by the convergence
of the integration.

From the single-spin evolving equation with the com-
peting mechanism, we can obtain

d 1 d
M) =5 Zijk g7 Gk (D) =p (
and

d
E N ZQ'L]k Z ngk

ij K z_]k

= (-p{l—k%(l—pz%)}

6K (1—pr)—>
+(1‘p){6bK<1RpR>

- [1 -2 m] })M'm.

1+ %) M(t), (23)
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The solutions of equations (23, 24) are, respectively,

M(t) = M (0)exp [-p(1 — K/KQ)t], (K >0) (25)

M'(t) = M’ (0) exp ( - {p - ) g

36 3p
+1-7) [6— KO —pr)/K0 TR}

X [1 - PR)%] }>,

if p=1,then K >0 (26)
if p#1,then (b> K(1—pg)>0)/’

where KO = J/kpT? = b/6 is the critical point without
the SWN effect.
(1) When no SWN effect is considered and pr = 0, the
phase diagram is given by Figure la.
(2) Now we introduce the R-SWN effect and set pr =
0.1, and then equations (25, 26) become
M(t) = M (0)exp [—p(1 — K/K)t], (27)

and

14 2K
P 10K?

+(1-p) <763163% +23—0> (1— %)H (28)

Analyzing the long-time asymptotic behavior, we find
that:
(2.a) For the case of

M'(t)= M’ (O)exp{ —

K <K}, (T>T17),
we have both vanishing M (¢) and M’ (¢), and this corre-
sponds to the paramagnetic phase.
(2.b) For the case of
K — K?,

we shall observe the critical slowing down of the system.
(2.c) For the case of

K> K, (T <17),

and

K _25230p — 22230 + 1504/26017p% — 46842p + 21609
K9 2(621p — 81) ’

the condition leads to nonvanishing M (¢) and vanishing
M’ (t), which correspond to the ferromagnetic phase.
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(2.d) For the case of

25230p — 22230 + 150+/26017p? — 46842p + 21609
2 (621p — 81)

K - 20
KO~ 37
we have both nonvanishing M (¢) and M’ (¢), which cor-
respond to the heterophase.

(2.e) For the case of

K/K? >20/3,

For the same reason (see Sect. 2. (1.e)), we cannot give
theoretically the behavior of the system in this region.
The phase diagram is shown in Figure 1c.

4 Summary

Comparing Figures la, b and c, we find both similarities
and differences. The phase diagrams have similar struc-
tures while the boundaries may be shifted by the SWN
effect. In the following we briefly explain our observations
and discuss the nature of the competing mechanism and
the SWN effect.

First we notice that the phase diagrams are all sep-
arated into four regions, with two special temperatures:
one is the critical temperature K. = J/kpT., another is
the limit temperature Kpax = J/kpTmin required by the
convergence of the integration. When the SWN effect does
not exist, K, = K? = J/kpT? = b/2D is the critical point
of the Gaussian model, where b is the Gaussian distribu-
tion constant and D is the space dimension, and K,.x = b
(since b > K = |J| /kpT > 0 is the region where we can
assure the convergence of the integration in the Kawasaki-
type dynamics of the antiferromagnetic system). When

the A-SWN effect is introduced, K. = WKS and

Kunax = b = 2DK? (in the example studied D = 3,
pa~1/N,and K./K? = 6/7). When the R-SWN effect is

introduced, K, = K% and Koy = —>— = QQKS (in the
¢ (1-pr) (1-pr)

example studied D = 3, pr = 0.1, and Kp,ax /K2 = 20/3).
Now we describe the phase behavior: Above the critical
temperature T, = J/kp K., one can only observe a disor-
dered state, namely the paramagnetic phase, because of
the dominating heat noise. Below critical temperature T,
the system begins to show some kind of order, and the
system behavior is determined by the competition be-
tween the Glauber-type mechanism which favors a ferro-
magnetic state, and the Kawasaki-type mechanism which
favors an antiferromagnetic state. The result of the com-
petition is subject to two factors, the probability of each
mechanism and the temperature. However, the Kawasaki-
type dynamics describing an antiferromagnetic Gaussian
system is limited by the condition T > T\,i,, which is nec-
essary for the convergence of the integration. As a result,
in the region T' < Tihin we cannot theoretically obtain the
system behavior.
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Now we discuss how and why the two special temper-
atures T, and T, may be affected by the SWN effect.
When the Gaussian model is built on a R-SWN;, the tem-
perature T, (= TCO) remains the same. This is because, as
is clear in all of the phase diagrams, T, is determined by
the competition between the heat noise and the Glauber-
type mechanism, which favors a lower energy state. One
important characteristic of the Gaussian model is that this
temperature can be further determined by the average co-
ordination number. For example, without the SWN effect
this temperature is given by J/kgT. = b/2D, where 2D is
the average coordination number of a D-dimensional lat-
tice. On a R-SWN; the average coordination number is not
changed when a portion of the regular links are rewired,
and thus T, also remains unchanged. On the other hand
the temperature T, is lower than the value on a regu-
lar network. On R-SWN long range links have made long
range spin-pair redistribution possible, and therefore the
influence of the Kawasaki-type mechanism is enhanced.
Thus it is not difficult to understand why on R-SWN there
is a lower value of the temperature T yiy,.

When the Gaussian model is built on an A-SWN, the
6+(N—1)pa TO)

6 c

temperature T, (: becomes higher. As is

explained above, this temperature is determined by the
average coordination number, which is % -2D on a three
dimensional A-SWN with p4 = 1/N. At the same time the
temperature Ty, is unchanged. We may explain that it is
because the two dynamics are both strengthened, i.e., by
the larger coordination number and the long range spin-
pair redistribution, and the temperature that character-
izes a certain counterbalance remains the same.

To summarize, in this article we investigate the
competing Glauber-type and Kawasaki-type dynamics
on two typical three-dimensional small-world networks,
adding-type (A-SWN) and rewiring-type (R-SWN),
in the framework of the Gaussian model. We get the
evolution of the order parameters, M (¢) and M'(t), and
by analyzing the long time asymptotic behavior we draw
the phase diagrams. With the competing mechanism,
there exist two easily identifiable special temperatures.
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The influence of the long range links is analyzed: For the
Glauber-type dynamics, more important is the altered av-
erage coordination number while the Kawasaki-type dy-
namics is enhanced by the long range spin interaction and
redistribution.
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